
LLNL-CONF-420270

Establishing Economic
Effectiveness through Software
Health-Management

M. Pizka, T. Panas

November 16, 2009

Workshop on Software Health Management
Pasadena, CA, United States
July 21, 2009 through July 21, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.


Abstract—More than two thirds of the annual software budget

of large-scale organizations dealing with complex software
systems is spent on the perfection, correction, and operation of
existing software systems. A significant part of these running
costs could be saved if the software systems that need to be
constantly extended, maintained and operated were in a better
technical condition. This paper proposes Software Health-Checks
as a method to assess the technical condition of existing software
systems and to deduce measures for improving the health of
software in a structured manner. Since 2006 numerous
commercial software systems with a tota l o f 30 MLOC1,
implemented in various technologies, were already checked with
this method. The actions suggested as a result of these Software
‘Health-Checks’, repeatedly yielded dramatic performance
improvements, risk reductions and cost savings between 30%
and 80%.

Index Terms—software quality, software maintenance,
software management, software economics

I. INTRODUCTION
ntegrated Systems Health Management is used in complex
heterogeneous physical systems to continuously monitor the

state of (sub-)systems and to take appropriate actions in case
of anomalies. Unfortunately, there are only few and barely
mature techniques to monitor the health of software systems in
a similar way. The closest matches are presumably the results
of research on fault tolerant systems [1] on the one hand and
commercial systems management solutions, such as IBM
Tivoli [2] for large scale information systems on the other
hand.

Besides the absence of health management facilities similar
to those found in systems management, we strongly argue that
a proper health management of software systems should not
solely focus on correct operation of the software system but on
overall short-, mid-, and long-term economic effectiveness of
software. The intrinsic goal of software health management
must be to extend the life-time of software, which is
predetermined by its economic effectiveness.

A. Situation
More than 70% of the overall software budgets of larger

organizations are spent on maintaining and operating existing
software systems [8], [3]. At the same time large-scale

M. Pizka and T. Panas are with itestra GmbH, 85748 Garching, Germany
(corresponding author: M. Pizka, phone: +49 (179) 2108101; e-mail:
pizka@itestra.de).

1 Million lines of code

software systems are known to suffer from a gradual quality
decay over time if no pro-active countermeasures are taken
[4], [5]. This decay affects all of the quality attributes dened
with the ISO 9216 software quality standard: reliability,
functionality, efficiency, portability, usability, maintainability
[7], and security.

Consequently, poorly performing, unstable, misaligned and
inflexible systems cause enormous annual costs. Although
there is a correlation between the age of a system and the
degree of decay, there are numerous other reasons for
decreasing reliability and performance besides the age of a
software system. As described in [13], many software systems
show severe signs of decay causing excessive cost of
ownership right after and sometimes even before the first
release.

B. Requirement Software Health-Management
Gradual and even rapid decay, along with the increasing risk
and cost of ownership, can be mitigated effectively by

a) performing health-checks (structured assessments) of
the state of the software system on a regular basis and

b) taking immediate action to remove the signs of decay
detected during these health-checks.

As our experience shows, implementing health-checks and
subsequently enforcing actions to eliminate the effects of
decay reduces costs and risks. This thereby extends the life-
time of software systems. Based on D.L. Parnas’ seminal work
on “software aging” [4], we call this iterative process software
health management.

Note that this view on software health management is
deliberately not restricted to a particular quality attribute (such
as correctness or reliability during operation) but aims to
increase overall economic effectiveness. Therefore it would be
unrealistic to assume that this kind of long-term oriented
software health management could be performed
automatically or even built into systems. Instead, software
health management, as described in this paper, is based on a
combination of tool-supported analyses, expert reviews and
manually performed counter-actions.

Establishing Economic Effectiveness through
Software Health-Management

Markus Pizka and Thomas Panas, itestra GmbH

I

Outline
Section Error! Reference source not found.Fehler!

Verweisquelle konnte nicht gefunden werden. explains the
quality model and the analysis process that we use to assess
the health of software systems. Thereafter, this paper focuses
on our experiences performing software health management in
practice. We show key findings from software health checks
on more than 30 MLOC and outline actual improvements
achieved in Section III.

II.HEALTH CHECK MODEL AND PROCESS

A. Software Quality Equals Economic Effectiveness
In order to assess the health condition of a software system,

one needs to establish a proper software health model, which
in turn requires software quality to be measured. As stated in
[10] and others the frequently used term software quality has
many different meanings.

The most commonly used definition of software quality is
“conformance to a specification”. However, this entails that
quality measurement results are meaningless if the initial
specification is incomplete or weak by itself. Since most
specifications in practical settings are indeed weak, virtually
every software system was deemed high quality under this
definition, which is certainly untrue.

Fig. 1. Practically relevant software quality equals economic effectiveness.

There are, of course, numerous other definitions for
software quality besides “conformance” as in [7]. However,
the ISO9126 standard as well as many other definitions from
research on software metrics fall short of explaining the actual
importance of software quality defects. For instance, although
the cyclomatic complexity metric is agreed upon to be
important, its actual effect on a particular software system is
unclear.

We therefore propose a value-based view on software
quality as sketched in Figure 1. With this quality model in
mind, a software system has high quality (i.e. is healthy) if and
only if its costs are low.

Among the consequences of this model are: First, it
guarantees that everything that is regarded during quality
analysis is relevant to the owner of the system, because
everything gets mapped onto the actual cost structure. Second,
it allows assessing the quality of a software system from two
different perspectives, i.e. economics and technical properties.
E.g. a system that does not cause any maintenance costs is by

definition highly maintainable. There is hardly any need for a
sophisticated technical analysis of the maintainability metrics
such as the SEI maintainability index in this case. At the same
time, a system that handles large volume of data with
inadequate algorithms, such as bubble-sorts or in single linked
lists, will be unnecessarily expensive for its owner. Hence,
defining cost effectiveness as the quality goal allows
combining economic and technical data during quality
analysis which produces highly relevant health-check results
in a very efficient way.

B. Economics-based two-dimensional software quality model
Based on this notion of software quality and the Software

Re-engineering Assessment Handbook, published by DoD [8],
that shares this economic view on software quality, we
developed a quality model that organizes the criteria that need
to be assessed during software health-checks into two
dimensions, see figure 2.

Fig 2. Two-dimensional quality model

At the top of this model is the breakdown structure of all
activities that are performed on a software system and
represent the major costs. The activities used in a certain
setting depend on the organization that owns the software, its
processes and its strategy. Typical relevant activities are
maintenance (as shown as an example in fig. 2), development,
and operations but also repairing damages due to software
failure.

At the left of the models are the facts that describe the
technical state of the software system including properties of
the organization such as it process maturity. The technical
facts are more or less context-independent with minor
variations between different technologies (e.g. COBOL, Java).

The current version of our quality model encompasses 260
criteria that were chosen because of their strong impact on
certain activities and therefore costs. Selected examples are:

 Sample facts about the code: cloning ratio, unused
code, number of workarounds, conditional ratio,
architectural violations, quality of naming

 Sample facts about the documentation: homonym
ratio, synonym ratio, completeness, actuality

 Sample facts about the organization: CMMi level,
number of employees with process know-how,
number of employees with system know-how

For more information about our quality-model, please refer
to [6][9][12].

C.Health Management Process
During our Health-Check, we initially determine costs (top)
and then the technical properties (left) of a software system.

Maintainability

Correctness

Reliability

Usability

Security

Performance

Maintenance

Errors

Staff

Operation

Training

Extension

Q Attribute Cost Factor

The analysis of technical properties consists of the following
steps:

 Acquire artefacts
 Interview with key stakeholders to collect facts

about the organization, processes, etc.
 Tool-supported static analysis of the code base

with ConQAT [11]
 Manual inspection of the code and documents
 Review of the analysis results with technical

experts of system (e.g. former developers)
 Design of improvement actions if indicated
 Planning and ROI (return on investment)

estimation for all improvement actions
 Presentation of the results to the owners of the

software system, who will decide whether
optimizations are executed

Note, the analysis uses a tool (ConQAT) only to collect
some but important facts about the code and its documentation
and to guide manual inspection. All other facts are analysed
either through manual inspection or through interviews.
However, in practice, the complete analysis phase takes only 5
to 15 man-days, depending on the size of the system under
consideration.

Of course, Health Management is more than just software
analysis. It also encompasses executing appropriate actions to
optimize legacy systems. The time and effort needed to
implement these actions clearly depends on the number and
complexity of the selected actions. However, most times
improvement actions can usually only be successful if they are
completed and yield a positive ROI within less than 12 months

Despite of numerous technical challenges, the biggest
challenge to successfully improving the health of software
systems is an organizational and psychological issue: i.e. how
to gain and preserver acceptance and trust from the
stakeholders of the system. Original developers commonly do
not understand the need for change, and managers responsible
for such systems are also averse to change. This is mainly
because managers are afraid that they could be made
responsible for actions that they incorrectly or insufficiently
supervised in the past. Our Health-Check uses, amongst
others, two essential techniques to overcome these problems:
1. We structure the presentation of health-check results

according to importance so that management can easily be
convinced of problems inherent in their software systems.
For this, our initial slide shows the economic potential of
improvements followed by an overview of health-check
results. Thereafter, we present more details, down to code
fragments showing the weaknesses. Interestingly, showing
code repeatedly proved to be the most convincing
information – even to top managers.

2. We take full responsibility for our actions. Our funding and
success is dependent on the success of our optimizations.
Our customers pay based on our performance and results we
achieve and not according to our initial projections.

III. EXPERIENCES

itestra has applied its health-check model to real world
systems i m p l e m e n t e d i n P L / I , C , C O B O L , J a v a ,
Matlab/Simulink and PHP, since 2006. The total size of all
systems analyzed exceeds 30 MLOC (million lines of code).
These systems are worth about $500 million in assets and
create $50 million in annual costs for development and
maintenance. Our health-check of these systems indicated that
these annual costs can be reduced by at least 30% within one
year. Figure 3 shows the distribution of our analysis of 20
systems, their annual costs (bottom) and health state (left).

Figure 3: Health-Check of 20 software systems. Maintenance costs
improved by 30%

Through the implementation of the suggested actions to
improve the health state of these systems we were able to
proof that 30% of these annual costs of $50 million can be
economized. As a matter of fact, the improvements achieved
so far span from at least 35% up to 80% of the annual
operational and maintenance costs.

Furthermore, we learned that the need for software health
management is steadily increasing. Customers are
understanding and adopting software health management
practices more and more frequently. This is the result of our
strong efforts to communicate our analyses and findings in the
most effective ways possible.

IV. CONCLUSION

Software health checks are essential, especially for aging
systems. This is comparable to humans that perform
preventive health checks, thereby lowering their risk of
diseases and treatment costs. Our health check detects crucial
weaknesses and risks in software. These checks have a
profound influence on the running costs of such systems. Even
if not broken, such systems function less efficiently and are
more prone to failures.

We learned that many systems are in astonishingly poor
technical condition and because of this software health
management is crucial – not only to correct software and
hence reduce system downtime, but primarily to drastically
reduce software operation and maintenance costs.

Today, companies are still forced to spend large sums to
keep these systems running just because the causes of failure
and inefficiency are not understood.

Our health check helps to discover software weaknesses and
allows to drastically cut running costs. Besides, healthy
software has the advantage of longer live expectancy which
means that risky legacy migration scenarios can be avoided or
at least vastly deferred.

REFERENCES

[1] Brian Randell. System Structure for Software Fault Tolerance. IEEE
Transactions on Software Engineering, vol. 1, 1975, pages 220 – 232.

[2] IBM. IBM Tivoli software. http://www-01.ibm.com/software/tivoli/,
2009.

[3] Accenture. Editorial - only 40% of the IT budget for new solutions. IS
report, June 2003.

[4] David Lorge Parnas. Software aging. In Proc. International Conference
on Software Engineering (ICSE ’94), pages 279–287. IEEE Computer
Society, 1994.

[5] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J. S. Marron, and
Audris Mockus. Doescode decay? assessing the evidence from change
management data. IEEE Trans. Softw. Eng., 27(1):1–12, 2001.

[6] Manfred Broy, Florian Deißenböck, and Markus Pizka. Demystifying
maintainability. In Proc. of the 2006 Int. Workshop on Software Quality.
Shanghai, China, 2006.

[7] ISO 9126-1 Software engineering - Product quality - Part 1: Quality
model. International standard, ISO, 2003.

[8] STSC. Software Reengineering Assessment Handbook v3.0. Technical
report, STSC, U.S. Department of Defense, Mar. 1997.

[9] Florian Deißenböck, Markus Pizka et al. Tool Support for Continuous
Quality Control. IEEE Software, vol. 25, 2008, pages 60 – 67.

[10] Barbara Kitchenham and Shari Lawrence Peeger. Software quality:
The elusive target. IEEE Software, 13(1):12–21, 1996.

[11] ConQAT. http://conqat.cs.tum.edu/.
[12] Florian Deissenboeck, Markus Pizka, and Tilman Seifert. Tool support

for continuous quality assessment. In Proc. IEEE International
Workshop on Software Technology and Engineering Practice (STEP),
pages 127–136. IEEE Computer Society, 2005.

[13] Benedikt Mas y Parareda and Markus Pizka. Web-based and other
young legacy-systems. information Management & Consulting, 22(2),
June 2007.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

